Флотация – это процесс выделения мелкодисперсных загрязнений из воды с диспергированными пузырьками воздуха. Прилипание частиц загрязнений к поверхности газового пузырька возможно при несмачивании или плохом смачивании частицы данной жидкостью.

Флотационные установки применяют:

— для удаления загрязняющих веществ из сточных вод перед биологической очисткой;

— для отделения активного ила во вторичных отстойниках;

— для глубокой очистки биологически очищенных сточных вод;

— при физико-химической очистке с применением коагулянтов и флокулянтов;

— в схемах повторного использования очищенных вод.

Флотационный метод очистки обеспечивает также снижение БПК и ХПК. Эффективность процесса флотации колеблется в довольно широких пределах: от 22 до 99 %. Наиболее часто флотационный метод очистки применяют в локальных сооружениях для удаления основной массы загрязнений. Флотационный процесс протекает в 4-6 раз быстрее отстаивания при одинаковом эффекте удаления загрязнений.

Агрегаты пузырьков воздуха с примесями всплывают на поверхность, образуя пенный слой с более высокой концентрацией частиц, чем в исходной жидкости.

Внешним проявлением способности жидкости к смачиванию является значение поверхностного натяжения ее на границе с газовой фазой, а также разность полярностей на границе жидкой и твердой фаз. Процесс флотации идет эффективно при поверхностном натяжении воды 60-65 мН/м.

Коагуляция и флокуляция значительно интенсифицируют процесс флотации загрязнений.

Можно выделить следующие способы флотации:

1) с выделением воздуха из раствора;

2) с механическим диспергированием воздуха;

3) с подачей воздуха через пористые материалы;

Флотация с выделением воздуха из раствора. Этот способ применяется при очистке производственных сточных вод, содержащих очень мелкие частицы загрязнений, поскольку позволяет получать самые мелкие пузырьки воздуха. Сущность его заключается в создании пересыщенного раствора воздуха в сточной жидкости. Выделяющийся из такого раствора воздух образует микропузырьки, которые и флотируют содержащиеся в сточной воде загрязнения. Количество воздуха, которое должно выделиться из пересыщенного раствора и обеспечить необходимый эффект флотации, обычно составляет 1-5 % объема обрабатываемой воды.

Наиболее широкий диапазон применения находит напорная флотация. поскольку позволяет регулировать степень пересыщения в соответствии с требуемым эффектом очистки сточных вод при начальной концентрации загрязнений до 4-5 г/л и более.

Одним из важных узлов установки напорной флотации, от работы которого зависит эффективность метода, является сатуратор (рис. 4.8), обеспечивающий при заданных времени и давлении наибольший объем растворенного в воде воздуха, а также при изменении давления и температуры (рис. 4.9).

Флотация

Рис. 4.8. Сатураторы:

а – сатуратор с форсункой; б – сатуратор с инжекторным смешением; в – сатуратор с кольцами Рашига; 1 – корпус; 2 – отвод воды, насыщенной воздухом; 3 – подача водовоздушной смеси; 4 – предохранительный клапан; 5 – струенаправляющий цилиндр; 6 – сопло; 7 – подача сточных вод; 8 – загрузка из колец Рашига; 9 – подача воздуха

На эффективность флотации существенное влияние оказывают размер газовых пузырьков и частота их генерации. Чем меньше размер пузырька, тем больше эффективность удаления примесей из воды.

Для образования мелких пузырьков нужно создать условия для максимального снижения поверхностного натяжения и увеличения перепада давлений. Оптимальный размер пузырьков 15-30 мкм.

Для напорной флотации существует аэрофлотатор (рис. 4.10).

Флотация

Рис. 4.10. Аэрофлотатор: 1 – камера; 2 – скребок; 3 – шламоприемник; 4 – поверхностные скребки

Заслуживает внимание эрлифтный флотатор (рис. 4.11).

Флотация

Рис. 4.11. Эрлифтная флотационнаяй установка: 1 – питательный бак; 2 – подающий трубопровод; 3 – труба эрлифта; 4 – флотационная камера; 5 – выпуск шлама; 6 – выпуск очищенной воды; 7 – трубопровод подачи воздуха; 8 – аэратор

Флотация

Рис. 4.12. Флотатор-отстойник:

1 – трубопровод для удаления осадка; 2 – подача воды, насыщенной воздухом; 3 – трубопровод для выхода пены; 4 – пеносборная труба; 5 – распределительное устройство; 6 – зона флотации; 7 – привод; 8 – скребок для удаления пены; 9 – зона отстаивания; 10 – отвод очищенной воды; 11 – полупогруженная кольцевая перегородка; 12 – скребок для удаления осадка

Союзводоканалпроект создал проект флотатора-отстойника производительностью 150, 300, 600 и 900 м 3 /ч (рис. 4.12), основные размеры которых представлены в табл. 4.3. Отличительными особенностями этой конструкции являются дополнительный скребковый механизм для удаления осевшего осадка и верхнее расположение впускного устройства.

Основные размеры флотаторов-отстойников при разной производительности

Производительность, м 3 /ч

Общие размеры отстойника

В этом случае водный поток вынужден двигаться вниз навстречу движению всплывающих пузырьков воздуха. Как показывают исследования, при противоточной схеме движения воды и пузырьков воздуха обеспечивается более высокий эффект задержания загрязнений.

Во ВНИИВодгео разработана более совершенная конструкция флотатора (рис. 4.13), в которой учтены основные недостатки применяемых конструкций. Исходная вода подается в распределитель, расположенный на половине глубины флотатора и работающий подобно типовым конструкциям. Различие состоит в том, что распределение воды происходит по всей площади сооружения. Рабочий объем флотатора над распределителем и под ним разделен коаксиальными цилиндрическими перегородками, которые препятствуют образованию циркуляционных потоков, что способствует более эффективному использованию объема. Исследования промышленных флотаторов конструкции ВНИИВодгео диаметром 6 и 13 м показали, что коэффициент использования объема в них составляет около 80-90 %, а противоточная схема движения пузырьков воздуха и рабочего потока воды способствует повышению эффективности очистки.

Флотация

Рис. 4.13. Флотатор ВНИИВодгео: 1 – подача воды, насыщенной воздухом; 2 – трубопровод для удаления пены; 3 – пеноприемный карман; 4 – привод; 5 – скребок для сгона пены; 6 – трубопровод очищенной воды; 7 – полупогруженная кольцевая перегородка; 8 – распределительное устройство; 9 – коаксиальные кольцевые перегородки; 10 – скребок для удаления осадка; 11 – трубопровод удаления осадка

Флотация с механическим диспергированием воздуха. Энергичное перемешивание сточной воды во флотационных импеллерных установках (рис. 4.14) создает в ней большое количество мелких вихревых потоков, что позволяет получить пузырьки определенного размера.

Рис. 4.14. Флотатор с импеллером: 1 – камера; 2 – труба; 3 – вал; 4 – импеллер

Флотация

Степень диспергирования воздуха зависит от окружной скорости вращения импеллера, которую принимают 10-15 м/с. Диаметр импеллера должен быть не более 600 мм. Зона, обслуживаемая импеллером, не должна превышать размеров квадрата со стороной 6dи (где dи – диаметр импеллера). Высота флотационной камеры Hф принимается равной 1,5-3,0 м, продолжительность флотации tф = 20 — 30 мин.

Недостатком импеллерных флотаторов является относительно высокая обводненность пены.

Пневматические флотационные установки применяют при очистке сточных вод, содержащих растворенные примеси, агрессивные к механизмам (насосам, импеллерам и др.), имеющим движущиеся части. Измельчение пузырьков воздуха достигается путем впуска воздуха во флотационную камеру через сопла, которые располагаются на воздухораспределительных трубках, укладываемых на дно флотационной камеры на расстоянии 0,25-0,3 м друг от друга. Диаметр отверстий сопел 1-1,2 мм; рабочее давление перед ними 0,3-0,5 МПа; скорость выхода струи из сопел 100-200 м/с. Глубина флотатора принимается 3-4 м. Продолжительность флотации составляет 15-20 мин.

Флотация с подачей воздуха через пористые материалы. Этот метод отличается простотой аппаратурного оформления процесса и относительно малыми расходами энергии. Во флотатор с фильтросными пластинами (рис. 4.15) воздух во флотационную камеру подается через мелкопористые фильтросные пластины, трубы, насадки, уложенные на дне камеры.

Флотация

Рис. 4.15. Флотатор с фильтросными пластинами: 1 – камера; 2 – фильтросные пластины; 3 – скребок; 4 – шламоприемник

Размер отверстий должен быть 4-20 мкм, давление воздуха – 0,1-0,2 МПа, продолжительность флотации – 20-30 мин, расход воздуха определяется экспериментально. Рабочий уровень обрабатываемой воды до флотации 1,5-2 м. Недостатком этого метода является возможность зарастания и засорения пор, а также трудность подбора мелкопористых материалов, обеспечивающих выход мелких, близких по размерам пузырьков воздуха.

Химическая флотация. При введении в сточную воду некоторых веществ для ее обработки могут протекать химические процессы с выделением газов: O2. CO2. Cl2 и др. Пузырьки этих газов при некоторых условиях могут прилипать к нерастворенным взвешенным частицам и выносить их в пенный слой. Такое явление наблюдается, например, при обработке сточных вод хлорной известью с введением коагулянтов (рис. 4.16).

Сточные воды поступают в реакционную камеру. Туда же подают реагенты. Во избежание дегазации время пребывания сточной воды в камере должно быть минимальным. После насыщения вода поступает во флотационную камеру. Недостаток метода – большой расход реагентов.

Рис. 4.16. Схема установки для химической флотации: 1 – мешалка; 2 – скребок; 3 – шламоприемник; 4 – флотационная камера; 5 – реакционная камера

Флотация

Электрофлотация. Сущность электрофлотационного способа очистки сточных вод заключается в переносе загрязняющих частиц из жидкости на ее поверхность с помощью пузырьков газа, образующихся при электролизе воды. В процессе электролиза воды на катоде выделяется водород, а на аноде – кислород. Основную роль в процессе флотации частиц играют пузырьки, выделяющиеся на катоде. Размер пузырьков, отрывающихся от поверхности электрода, зависит от значения краевого угла смачивания, кривизны поверхности электрода, а также его конструкции.

При применении растворимых электродов (обычно железных или алюминиевых) на аноде происходит анодное растворение металла, в результате чего в воду переходят катионы железа или алюминия, приводящие к образованию хлопьев гидроксидов. Одновременное образование хлопьев коагулянта и пузырьков газа в стесненных условиях межэлектродного пространства создает предпосылки надежного закрепления газовых пузырьков на хлопьях и интенсивной коагуляции загрязнений, что обеспечивает эффективность флотационного процесса. Такие установки называются электрокоагуляционно-флотационными. При пропускной способности до 10-15 м 3 /ч установки могут быть однокамерными, а при большей – двухкамерными горизонтального или вертикального типа.

5.189.134.229 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Что такое флотация: преимущества и недостатки этого способа очистки

ФлотацияОчистка сточных вод, в первую очередь, включает в себя этап прохождения отстойника как в локальных очистных сооружения, так и в общегородских. Отставание воды очищает воду только от крупных взвесей, которые осаждаются на дно, являясь тяжелее воды. Но как быть с теми частицами, которые легче воды и не подвержены осаждению? Существует метод для выделения и таких сложных загрязнителей, который называют флотацией.

Флотационная очистка применяется как одна из ступеней очистки сточных вод от таких примесей.

Подробнее о флотации

Флотация — это один из способов, применяемых для очистки сточных вод. Буквально слово «флотация» (англ. flotation) переводится как «плаванье на поверхности воды», поэтому и напоминает слово флот. Но если говорить об очистке флотацией, то ее целью является вывести на поверхность различные взвеси и другие вещества, которые имеют плотность близкую воде и не способны оседать.

В толще воды плавают различные мелкие твердые частицы, коллоидные взвеси и другие примеси, которые не оседают. Флотацию применяют для очищения сточных вод от ПАВ, нефтепродуктов, жиров, волокнистых веществ и взвесей активного ила. Также флотационный процесс по типу пенной сепарации способен удалить некоторые растворенные в воде вещества.

Физико-химические законы флотации

В основу флотационной очистки заложены сложные физико-химические процессы. Главным образом рассматривается понятие смачиваемости, то есть индивидуальной способности тех или иных веществ к смачиванию. Эта способность напрямую определяет поведение этих соединений на границе раздела фаз жидкости и газа. Существует два типа веществ:

  • Гидрофильные — характеризуются хорошей способностью к смачиванию;
  • Гидрофобные – несмачиваемые.

В зависимости от того, к какому типу относится то или иное вещество, оно хорошо убирается при помощи флотационной очистки или же, наоборот, не поддается выделению таким способом.

Этапы флотации

Процесс флотации несложен для понимания, его можно описать следующим образом:

  1. ФлотацияВ воду, которая подвергается очистке, подают диспергированный воздух;
  2. Гидрофобные частицы устремляются к воздушным пузырькам;
  3. Постепенно уменьшается и разрывается прослойка воды, разделяющая гидрофобные частицы и воздушные пузырьки. Это объясняется тем, что сила притягивающая молекулы воды друг к другу больше адгезии между водой и этими частицами;
  4. Образуется флотирующий комплекс из пузырьков воздуха и гидрофобных частиц, который напоминает пену;
  5. Этот флотирующий комплекс плавает на поверхности сточных вод, поскольку он легче той гетерогенной системы, в которой находится.

В итоге на поверхности воды образуется пенная субстанция. Полученную пену удаляют специальным приспособлением — это конечный продукт флотации или шлам.

Эффективность процесса флотации

Те или иные факторы могут понижать или повышать эффективность флотации, как способа очистки сточных вод. Наиболее значимое влияние оказывают приведенные ниже факторы:

  • ФлотацияСтепень гидрофобности частиц. Чем выше гидрофобность частиц вещества, тем они активнее вступают во взаимодействие с воздушными пузырьками, образуя значительные флотационные комплексы. Очевидно, что не все примеси являются абсолютно гидрофобными, существуют и гидрофильные составные. А некоторые имеют двоякую структуру, содержа в составе гидрофобные и гидрофильные группы. Чтобы повысить гидрофобность загрязняющих воду примесей, в нее добавляют специальные флотирующие добавки или реагенты;
  • Размер и прочность пузырьков пены. Флотационный процесс должен образовывать пузыри воздуха такого размера, чтобы они поднимались на поверхность воды. Но слишком крупные пузыри будут всплывать раньше времени, не успев захватить достаточно частиц загрязняющих примесей. К тому же эти пузырьки должны быть прочными, имея минимальный процент потерь вследствие разрушения;
  • Равномерность пенообразования. Важным фактором эффективности флотации является равномерность распределения в воде воздушных пузырьков и их общее количество.

На эти факторы можно оказать воздействие с помощью специальных реагентов, которые будут описаны далее.

Реагенты для улучшения флотации

Как описано выше, флотация зависит от качества пенообразования и гидрофобности частиц. Существуют специальные добавки, которые направлены на повышение качества пены и увеличения гидрофобности примесей. Реагенты можно разделить на две основные группы:

Наиболее часто встречаемый вид загрязнителей имеет в своем составе частицы с двоякими качествами, имеющими часть гидрофобных и часть гидрофильных групп. Их способность смачивания недостаточна для связывания с пузырьками воздуха, поэтому флотация малоэффективна. Чтобы решить эту проблему, в стоки добавляют так называемые добавки-собиратели, которые также имеют двоякую структуру, состоящую из гидрофильных (полярных) и гидрофобных (неполярных) групп. Полярные гидрофильные концы загрязнителя и собирателя слепляются между собой, а гидрофобные концы остаются свободными.

Собирателями для усиления флотации выступают поверхностно-активные вещества:

Качество пени играет одну из ключевых ролей в эффективности флотации. Существует группа добавок, которые направлены на улучшение пенообразования. Они предохраняют пузыри воздуха от разрушения, делая их упругими и значительно стабилизируя пенную массу. Это дает возможность удалить как можно больше загрязнителей из сточных вод. Такими стабилизаторами для пены являются:

  • Масло сосны;
  • Крезол;
  • Фенолы и много других веществ

Виды флотационной очистки стоков

Процесс флотации кратко описан как насыщение сточных вод воздухом с его диспергированием. То есть главная задача флотации заключается в получении пузырьков нужного диаметра в толщах сточных вод. Как именно это осуществляется описано ниже.

Выделение пузырьков воздуха из раствора

ФлотацияЧтобы выделить воздушные пузырьки из раствора, используют напорную и вакуумную флотацию. Напорная флотация представляет собой нагнетание воздуха, а затем резкое снижение давления в системе, что провоцирует выделение пузырьковой массы в толще воды.

Вакуумная флотация несколько схожа с напорной, но ее реализуют иначе. Первым этапом является прохождение воды через камеру аэрации, где она насыщается воздухом. После этого она поступает в дизаэратор, где удаляется нерастворенный воздух. Последним этапом является прохождение камеры флотации, в которой давление понижается. что вызывает бурное образование пузырьков.

Такими способами весьма успешно удаляются мелкодисперсные примеси.

Пропускание воздуха через пористые материалы

Это один из простейших способов с точки зрения физики для получения диспергированного воздушного потока. Перед попаданием воздуха в сточные воды, его пропускают через материалы с порами, такие как пластины со сквозными щелями. Диаметр пузырьков регулируется размером данных пор.

Электролизная флотация

Этот способ воплощают помещением в воду двух электродов, через которые пускают ток. Во время электролиза вода вокруг электродов расщепляется на пузырьки водорода и кислорода. Наиболее часто используемый материал для электродов: алюминий и железо. Эти металлы выделяют в воду коагулянты, которые связывают взвеси и превращают их в подобие хлопьев. Эти хлопья соединяются с воздушными пузырьками и выходят на поверхность сточных вод в вид пены.

Механическое диспергирование

Кроме образования пузырьков воздуха в воде при помощи смены давления, также применяют механические способы. Для этого также существует несколько путей:

  • ФлотацияИмпеллерная установка перемешивает водную массу с использованием турбины. При этом пузырьки получаются небольшого размера, что подходит для удаления нефтепродуктов и жиров. Скорость турбины позволяет регулировать размер пузырьков – чем выше скорость, тем меньше диаметр образуемых пузырьков;
  • Безнапорная флотация. представляющая собой применение колеса, которое соединяют с центробежным насосом. Пузырьки, которые получают в результате этого процесса, крупные и пригодны для удаления жиров, волокнистых частиц, таких как, например, шерсть;
  • Пневматическая флотация осуществляется насыщением воздухом через форсунки труб, которые уложены на дно камеры. Такой способ применяют для очистки агрессивных стоков, которые могут повредить флотационным установкам – импеллеру и колесу.

Пузырьки в этих трех способах образуются в результате вихревого процесса, который стимулируется перемешиванием.

Флотация – преимущества и недостатки способа

На сегодня флотация является одним из наиболее часто используемых приемов очистки стоков. Его применяют и промышленные очистительные сооружения и городские. Причиной этому служит целый ряд факторов, которые говорят в пользу флотации.

Преимущества флотационной очистки:

  1. ФлотацияНевысокая стоимость применяемого метода очистки;
  2. Простое оборудование;
  3. Такой способ для некоторых взвесей намного быстрее, нежели скорость их оседания при отстаивании;
  4. Выделение из сточных вод определенных загрязняющих веществ, в том числе нефтепродуктов;
  5. В процессе флотации остается шлам с низким содержанием воды (малые потери воды).

Безусловно, как и любой метод, флотация связана и с некоторыми отрицательными моментами.

Недостатки флотационной очистки:

  1. Она удаляет далеко не все загрязнители, поскольку ее эффективность зависит от гидрофобности вещества;
  2. Часто приходится нести дополнительные затраты на внесение реагентов, которые улучшают качество пены и усиливают гидрофобность загрязнителей;
  3. К каждому виду загрязнителя нужен свой подходи, а, значит, нет универсального метода для удаления всех взвесей.

Выводы о флотации

Сколько бы преимуществ ни имела флотация, она не является самостоятельной и окончательной очисткой сточных вод. Это лишь один из этапов сложнейшего процесса, который позволяет удалить из воды большую часть нежелательных веществ. Флотационная очистка позволяет избавить воду от нефтепродуктов и масел, которые невозможно удалить другими способами, а также волокнистые составляющие стоков. Обычно флотационную очистку используют после этапа отстойников, чтобы удалить те вещества, которые не подвержены осаждению.

Флотация Донских Владимир Александрович

2.2. Флотационный метод обогащения

Флотацию применяют для обогащения большинства руд цветных металлов, апатитовых, фосфоритовых, графитовых, флюоритовых и других руд, широко используют в сочетании с другими методами при обогащении руд черных металлов, угля. Широкая распространенность флотации объясняется универсальностью процесса, связанной с возможностью разделения практически любых минералов, обогащения бедных руд с весьма тонкой вкрапленностью полезных минералов. Основные недостатки флотационного метода в экологической вредности процесса и относительно высокой его стоимости.

Флотация основана на различном закреплении частиц разделяемых минералов на межфазной границе, что определяется различием в смачивемости. При пенной флотации, наиболее применяемой в промышленности, пульпу насыщают газом, и частицы некоторых (несмачивемых) минералов прилипают к пузырькам газа и всплывают на поверхность, образуя минерализованную пену, которая легко удаляется механическим путем. Другие минералы (смачиваемые) не прилипают и остаются в объеме пульпы.

По способу насыщения пульпы газом различают несколько видов пенной флотации, однако наибольшее распространение получило насыщение пульпы воздухом.

Способность частицы минерала прикрепляться к пузырьку воздуха хорошо объясняется с позиции смачивания. Минералы, поверхность которых легко смачивается водой, называются гидрофильными (кальцит, кварц), а минералы, плохо смачиваемые водой,  гидрофобными (сера, графит, тальк, молибденит). Гидрофобность поверхности минералов оценивается различными методами. Наиболее распространенным методом оценки является определение краевого угла смачивания (), измеряемого от 0 до 180. Краевым углом смачивания называется угол между касательной к поверхности воздушного пузырька (или к поверхности капли воды в любой точке трехфазного периметра смачивания) и поверхностью минерала (рис. 2.11). Его принято отсчитывать в сторону жидкой фазы. Капля жидкости, нанесенная на поверхность твердого (минерала), будет растекаться до тех пор, пока не наступит равновесие между силами поверхностного натяжения, действующих по периметру смачивания, на границе твердое  газ т-г. жидкость  газ ж-г и твердое  жидкость т-ж:

Исходя из этого равенства, легко найти косинус краевого угла смачивания:

Флотация.

При полной гидрофильности, когда капля полностью растекается по поверхности твердого, краевой угол стремится к нулю, а косинус  к единице. При полной гидрофобности краевой угол стремится к 180, а косинус к – минус единице.

Чем хуже смачивается минерал, тем лучше он прикрепляется к пузырьку воздуха, легче флотируется. Почти все природные минералы хорошо смачиваются водой (краевой угол смачивания у них меньше 50). Исключением являются некоторые естественно-гидрофобные минералы (сера, графит, уголь, тальк и молибденит), у которых краевой угол составляет около 90.

Для регулирования смачиваемости разделяемых минералов (соответственно результатов флотации) применяют различные флотореагенты. Их подразделяют на собиратели, вспениватели, депрессоры, активаторы и регуляторы среды.

Задача собирателей  повысить гидрофобность извлекаемого минерала. Собиратели  это органические вещества, содержащие в своей молекуле углеводородную цепочку. В зависимости от строения молекулы собиратели бывают аполярными и гетерополярными.

Молекулы аполярных собирателей (керосин, смазочные масла) содержат только углеводородную цепочку. Их широко применяют при флотации естественно-гидрофобных минералов (уголь, сера и др.)

Молекулы гетерополярных собирателей имеют сложную асимметричную структуру, состоящую из двух частей, отличных по своим физико-химическим свойствам: углеводородной цепочки и активной группы (COOH, SH и др.). Такие молекулы в воде диссоциируют, и если углеводородная цепочка остается в анионе, то реагент называется анионоактивным, а если в катионе – катионоактивными. Если анионоактивные собиратели имеют в составе активной групе серу, то они называются сульфгидрильными, а если кислород – оксигидрильными. Наиболее распространенным анионоактивным собирателем являются ксантогенаты (жирные соли дитиоугольной кислоты) и жирные кислоты (например, олеиновая) или их соли (например, олеат натрия). Ксантогенаты являются основным собирателем при флотации сульфидных руд цветных металлов, а жирнокислотные при флотации кальцийсодержащих минералов.

Из катионоактивных собирателей наибольшее практическое значение получили первичные алифатические амины RNH2 и четвертичные аммониевые основания, например лауриламин солянокислый (C12 H25 NH3 Cl), который широко применяют при флотации солей и полевого шпата.

Назначение вспенивателей  способствовать созданию устойчивой минерализованной пены. В качестве вспенивателей используют органические соединения, в основном, из класса спиртов. Одним из распространенных вспенивателей является сосновое масло, которое применяют на многих обогатительных фабриках.

Назначение депрессоров  повысить гидрофильность неизвлекаемого минерала. В качестве депрессоров применяют различные минеральные соли, кислоты и основания. Например, цианистые соли (NaCN) используют для подавления флотации медных минералов.

Задача активаторов  усилить действие собирателя на извлекаемый минерал. В качестве активаторов применяют различные минеральные соли, кислоты и основания. Например, сульфид натрия (Na2 S) широко используется для улучшения флотации окисленных минералов.

Назначение регуляторов среды  поддерживать рН пульпы в требуемых пределах. Если необходимо сдвигать рН в кислую область ( 7), то чаще используют серную кислоту; если в щелочную ( 7), то щелочи (CaO, Na2 CO3. NaOH).

Подбирая соответствующие реагенты, их комбинацию и количества, добиваются оптимальных показателей флотационного обогащения.

Флотационными машинами называют аппараты, в которых осуществляют флотацию. Широкое применение флотации для обогащения самых разнообразных полезных ископаемых привело к созданию большого числа типов и конструкций флотационных машин.

Классификацию флотационных машин чаще всего производят в зависимости от способа аэрации и перемешивания пульпы. По этому признаку машины разделяют на механические, пневматические и пневмомеханические.

Механическая флотационная машина (рис. 2.13, а ) состоит из последовательного ряда камер 1. В центральной части каждой камеры внутри трубы 4 размещен вращающийся вал 2 с импеллером 3. При вращении импеллера проходящая через него пульпа эжектирует (засасывает) атмосферный воздух и выбрасывает его в камеру, заполненную пульпой. Образование воздушных пузырьков и аэрация пульпы происходят в результате турбулизации пульповоздушной смеси, поступающей из импеллера в камеру.

Пенный продукт (обычно концентрат) с помощью гребкового устройства 5 направляется на обезвоживание (или перечистку). Камерный продукт самотеком поступает в следующую камеру или выдается в качестве хвостов (из последней камеры машины).

В пневмомеханической флотационной машине (рис. 2.13, б ) перемешивание осуществляется установленной на валу 1 мешалкой 2, аэрация осуществляется путем подачи сжатого воздуха от воздуходувки. Воздух обычно подается через полый вал мешалки.

Флотационные машина обычно состоят из нескольких камер кубической формы. Пульпа последовательно перетекает из камеры в камеру и из нее удаляется пенный продукт. Камерный продукт разгружается через специальной отверстие в последней камере машины. В последнее время все чаще применяют большеобъемные (до 200 м 3 ) флотационные машины с цилиндрическими камерами. Такие машины состоят не более чем из трех камер. Применение большеобъемных машин позволяет снизить затраты на флотацию.

Пневматическая (аэролифтная) флотомашина конструктивно является наиболее простой (рис. 2.14). Она представляет собой емкость, вытянутую вверх, прямоугольного или круглого сечения, с коническим днищем, внутри которой расположена аэролифтная труба. В трубу под давлением подается сжатый воздух, который интенсивно перемешивает пульпу и насыщает ее пузырьками. Образующаяся на поверхности пена самотеком разгружается в желоба.

Особым видом пневматической машины является колонная флотационная машина. Эти машины предназначены для обогащения руд методом пенной флотации и рекомендуется для применения преимущественно в операциях перечистки черновых концентратов флотации. Колонная машина представляет собой камеру прямоугольного или круглого сечения (рис. 2.15). В верхней части камеры устанавливается брызгало, в нижней — шланговый затвор для полного выпуска материала из камеры. Кроме того в нижней части колонны помещен аэратор, в который подается сжатый воздух. Колонны выпускаются высотой до 15 метров и диаметром до 1,5 м. По сравнению с импеллерными флотомашинами применение колонных обеспечивает повышение содержания полезного компонента в концентрате на 1-2%, прирост извлечения на 0,5-2,5%, сокращение расходов на ремонт, электроэнергию на 40% и производственной площади — на 60%.

Обычные флотационные машины не могут обогащать крупные частицы (верхний предел крупности ограничен: для руд – 0,15 мм, для углей 0,5 – 1 мм), т.к. пузырьки воздуха просто не могут поднять крупные частицы на поверхность. Поэтому иногда используют машины пенной сепарации. В них пульпа поступает не внутрь машины, а подается сверху, через специальный питатель на слой пены (рис. 2.16). Гидрофобные частицы задерживаются в этом слое (из-за контакта с пузырьками воздуха), а гидрофильные проходят сквозь слой пены и опускаются на дно (т.к. к пузырькам не прилипают). В таких машинах верхний предел крупности обогащаемого материала может быть поднят до 1 – 2 мм.

Для обработки пульпы реагентами применяются специальные аппараты – контактные чаны, которые представляют собой емкости круглого или прямоугольного сечения с механическим или воздушным перемешиванием. Реагентные питатели это специальные приборы, предназначенные для подачи реагента в требуемую точку схемы обогащения в строго определенном количестве. Исполнительный механизм таких приборов может быть механического, пневматического или электромагнитного принципа.

Схема флотации – определенная последовательность операций флотации возможно в сочетании с операциями измельчения и классификации. При выборе схемы флотации учитывают характер и размер вкрапленности полезных минералов, их содержание в руде и флотируемость, требования к качеству концентратов и ряд технико-экономических факторов. Начальная операция флотационного процесса в схеме при извлечении одного или нескольких металлов называется основной флотацией. В результате проведение основной флотации, как правило, не удается получить кондиционный концентрат и отвальные хвосты из-за близости флотационных свойств разделяемых минералов, недостаточного их раскрытия и т. д. Получаемые после основной флотации некондиционные (грубые) концентраты и «богатые» хвосты подвергают, иногда после их доизмельчения, повторной флотации. Флотация концентрата основной флотации называется перечистной флотацией, а флотация хвостов основной флотации  контрольной флотацией.

Число перечистных и контрольных флотации зависит от содержания флотируемых минеральных компонентов и требований, предъявляемых к концентрату и хвостам. Совокупность основной, контрольной и перечистных операций, при которых выделяется один или несколько готовых (не подвергаемых дальнейшей флотации) продуктов, образует цикл флотации.

Флотация бывает прямой и обратной. Если полезный минерал переходит в пенный продукт, то флотация называется прямой; если он остается в камерном продукте, то обратной. В практике обогащения применяют, в основном, прямую флотацию.

Флотация является основным процессом обогащения сульфидных руд всех цветных металлов.

ФлотацияФЛОТАЦИЯ (французским flottation, английский flotation, букв. — плаванье на поверхности воды * а. flotation; н. Flotation, Flotatieren, Schaumschwimnaufereitung; ф. flottation; и. flotacion) — процесс разделения мелких твёрдых частиц (главным образом минералов) в водной суспензии (пульпе) или растворе, основанный на избирательной концентрации (адсорбции) частиц на границах раздела фаз в соответствии с их поверхностной активностью или смачиваемостью. Гидрофобные (плохо смачиваемые водой) частицы избирательно закрепляются на границе раздела фаз (обычно газа и воды) и отделяются от гидрофильных (хорошо смачиваемых водой) частиц.

Флотация — один из основных методов обогащения полезных ископаемых. применяется также для очистки воды от органических веществ (нефти. масел), бактерий, тонкодисперсных осадков солей и др. Помимо горноперерабатывающих отраслей промышленности флотация используется в пищевой, химической и других отраслях для очистки промышленных стоков, ускорения отстаивания. выделения твёрдых взвесей и эмульгирования веществ и т.п. Широкое применение флотации привело к появлению большого количества модификаций процесса по различным признакам (рис.).

Первой была предложена масляная флотация (В. Хайнс, Великобритания. 1860). Для её осуществления измельчённая руда перемешивается с маслом и водой; при этом сульфидные минералы избирательно смачиваются маслом, всплывают вместе с ним и снимаются с поверхности воды, а породы (кварц, полевые шпаты) тонут в воде. В России масляная флотация была использована для обогащения графитовой руды (г. Мариуполь, 1904). Позднее этот вид был усовершенствован: масло диспергировалось до эмульсионного состояния, что позволяло извлекать тонкие шламы, например марганцевых руд. Способность тонких гидрофобных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована для создания плёночной флотации (А. Нибелиус, США, 18&2; А. Мак-Куистен, Великобритания, 1904). Плёночная флотация не имела большого практического использования, но явилась прообразом пенной флотации, как с точки зрения использования межфазной границы вода — воздух, так и с точки зрения использования флотационных реагентов. поскольку было замечено, что плёночная флотация проходит значительно эффективнее в присутствии небольших количеств масла. В процессе пенной флотации обработанные реагентами частицы выносятся на поверхность воды пузырьками воздуха, образуя пенный слой. устойчивость которого регулируется добавлением пенообразователей. Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906) — вакуумная флотация, энергичное перемешивание пульпы (механическая флотации), пропускание воздуха сквозь мелкие отверстия (пневматическая флотация). Тонкодисперсные пузырьки для флотации из растворов получают также при электролитического разложении воды с образованием газообразного кислорода и водорода (электрофлотация).

Разнообразные способы образования газовых пузырьков и комбинации этих способов соответствуют различным типам флотационных машин. Соединение камер флотационных машин в определённой последовательности с направлением потоков пенных и камерных продуктов на перефлотацию, доизмельчение, перечистную или контрольную флотации составляет схему флотации, которая позволяет получить концентрат требуемого качества при заданном извлечении полезного компонента. Концентрат может быть получен пенным (прямая флотация) или камерным продуктом (обратная флотация); в последнем случае флотации подвергается пустая порода.

Для проведения пенной флотации производят измельчение руды до крупности 0,5-1 мм в случае природно-гидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера. уголь, тальк) и до 0,1-0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) — аэрофлокул происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу.

На флотацию влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура и плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему флотации, реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего флотацией разделяются зёрна размером 0,1-0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мк ухудшают флотацию более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1-3 мм) частицы при флотации отрываются от пузырьков и не флотируются. Поэтому для флотации крупных частиц (0,5 -5 мм) в CCCP разработаны способы пенной сепарации. при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости.

Во флотационных машинах часто происходит побочный процесс — осаждение гидрофобных частиц на стенках и особенно деревянных деталях, т.н. флотации твёрдой стенкой. Этот эффект был положен в основу метода флотации тонких шлемов (-10 мкм) с помощью носителя — гидрофобных частиц флотационной крупности, селективно взаимодействующих с извлекаемыми шламами; образующиеся агрегаты подвергались обычной пенной флотации.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 50-х гг. был разработан метод ионной флотации.

Широкое распространение флотации, возникшей первоначально благодаря ряду эмпирических изобретений, оказало значительное влияние на становление физической химии поверхностных явлений, а развитая теория стала основой совершенствования процесса флотации.

В развитии теории флотации важную роль сыграли работы русских физико-химиков: И. С. Громека, впервые сформулировавшего в конце 19 века основные положения процесса смачивания; Л. Г. Гурвича, разработавшего в начале 20 века положения о гидрофобности и гидрофильности. П. А. Ребиндер развил теорию адсорбционных и поверхностно-активных процессов, указал на роль флокуляции в процессе флотации. Вопросы электрохимических взаимодействий при флотации впервые рассмотрел А. Н. Фрумкин (1930), а затем Р. Ш. Шафеев и В. А. Чантурия. Теория аэрации при флотации развита В. И. Классеном. Теория взаимодействия реагентов с минералами при флотации развита И. Н. Плаксиным и его школой (В. А. Глембоцкий, Классен, Шафеев, В. И. Тюрникова и др.), а также А. Таггартом. А. Годеном, Д. Фюрстенау (США ), И. Уорком (Австралия), М. Г. Флемингом (Великобритания) и др. Кинетике флотации, математическому моделированию и управлению процессом флотации посвящены работы К. Ф. Белоглазова, О. С. Богданова, Л. А. Барского, В. З. Козина, И. И. Максимова, Ю. Б. Рубинштейна, а также П. Инуэ (Япония), Фюрстенау (США) и др. Создание теории селективной флотации минералов связано с именами М. А. Эйгелеса, С. И. Митрофанова, С. И. Полькина и др.

Совершенствование процесса флотации идёт по пути синтеза новых видов флотационных реагентов, конструирования флотационных машин, замены воздуха другими газами (кислород, азот), а также внедрения систем управления параметрами жидкой фазы флотационной пульпы. Благодаря флотации вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых.

Флотация это:

Пожалуйста, оформите её согласно правилам оформления статей.

Флота́ция (фр.   flottation. от flotter  — плавать) — один из методов обогащения полезных ископаемых. Процесс основан на различии способности минералов удерживаться на межфазовой поверхности, обусловленный различием в удельных поверхностных энергиях. Гидрофобные (плохо смачиваемые водой) частицы минералов избирательно закрепляются на границе раздела фаз, обычно газа и воды, и отделяются от гидрофильных (хорошо смачиваемых водой) частиц. При флотации пузырьки газа или капли масла прилипают к плохо смачиваемым водой частицам и поднимают их к поверхности. Флотация применяется также для очистки воды от органических веществ и твёрдых взвесей, разделения смесей, ускорения отстаивания в химической, нефтеперерабатывающей, пищевой и др. отраслях промышленности.

Содержание

История вопроса

В развитии теории флотации сыграли важную роль работы рус. физикохимиков — И. С. Громека, впервые сформулировавшего в конце XIX века основные положения процесса смачивания, и Л. Г. Гурвича, разработавшего в начале XX века положения о гидрофобности и гидрофильности. Существенное влияние на развитие современной теории флотации оказали труды А. Годена, А. Таггарта (США), И. Уорка (Австралия), советских учёных П. А. Ребиндера. А. Н. Фрумкина. И. Н. Плаксина, Б. В. Дерягина. профессора В. Р. Кривошеина и других.

Методы флотации

В зависимости от характера и способа образования межфазных границ (вода — масло — газ), на которых происходит закрепление разделяемых компонентов (см. Поверхностно-активные вещества ) различают несколько видов флотации.

  • Масляная флотация была предложена первой, на которую В. Хайнсу (Великобритания ) в 1860 году был выдан патент. При перемешивании измельченной руды с маслом и водой сульфидные минералы избирательно смачиваются маслом и всплывают вместе с ним на поверхность воды, а порода (кварц. полевые шпаты) осаждается. В России масляная флотация графита была осуществлена в 1904 году в Мариуполе .
  • Пленочная. Способность гидрофобных минеральных частиц удерживаться на поверхности воды, в то время как гидрофильные тонут в ней, была использована А. Нибелиусом (США. 1892 ) и Маквистеном (Великобритания, 1904) для создания аппаратов плёночной флотации, в процессе которой из тонкого слоя измельченной руды, находящегося на поверхности потока воды, выпадают гидрофильные частицы.
  • Пенная  — при которой через смесь частиц с водой пропускают мелкие пузырьки воздуха, частицы определённых минералов собираются на поверхности раздела фаз «воздух -жидкость », прилипают к пузырькам воздуха и выносятся с ними на поверхность в составе трехфазной пены (с добавлением пенообразователя, который регулирует устойчивость пены). Пену в дальнейшем сгущают и фильтруют. В качестве жидкости чаще всего используется вода, реже насыщенные растворы солей (разделение солей, входящих в состав калийных руд) или расплавы (обогащение серы).

Для образования пузырьков предлагались различные методы: образование углекислого газа за счёт химической реакции (С. Поттер, США, 1902 ), выделение газа из раствора при понижении давления (Ф. Элмор, Великобритания, 1906 ) — вакуумная флотация, энергичное перемешивание пульпы, пропускание воздуха сквозь мелкие отверстия.

Для проведения пенной флотации производят измельчение руды до крупности 0,5-1,0 мм в случае природногидрофобных неметаллических полезных ископаемых с небольшой плотностью (сера. уголь. тальк ) и до 0,1-0,2 мм для руд металлов. Для создания и усиления разницы в гидратированности разделяемых минералов и придания пене достаточной устойчивости к пульпе добавляются флотационные реагенты. Затем пульпа поступает во флотационные машины. Образование флотационных агрегатов (частиц и пузырьков воздуха) происходит при столкновении минералов с пузырьками воздуха, вводимого в пульпу, а также при возникновении на частицах пузырьков газов, выделяющихся из раствора. На флотацию влияют ионный состав жидкой фазы пульпы, растворённые в ней газы (особенно кислород), температура, плотность пульпы. На основе изучения минералого-петрографического состава обогащаемого полезного ископаемого выбирают схему флотации, реагентный режим и степень измельчения, которые обеспечивают достаточно полное разделение минералов. Лучше всего флотацией разделяются зёрна размером 0,1-0,04 мм. Более мелкие частицы разделяются хуже, а частицы мельче 5 мкм ухудшают флотацию более крупных частиц. Отрицательное действие частиц микронных размеров уменьшается специфическими реагентами. Крупные (1-3 мм) частицы при флотации отрываются от пузырьков и не флотируются. Поэтому для флотации крупных частиц (0,5-5 мм) в СССР были разработаны способы пенной сепарации, при которых пульпа подаётся на слой пены, удерживающей только гидрофобизированные частицы. С той же целью созданы флотационные машины кипящего слоя с восходящими потоками аэрированной жидкости.

Пенная флотация — гораздо более производительный процесс, чем масляная и плёночная флотации. Этот метод применяется наиболее широко.

  • Электрофлотация  — перспективный метод для применения в химической промышленности. заключается во всплытии на поверхности жидкости дисперсных загрязнений за счет выделения электролитических газов и флотационного эффекта.

Для очистки воды, а также извлечения компонентов из разбавленных растворов в 1950-х годах был разработан метод ионной флотации, перспективный для переработки промышленных стоков, минерализованных подземных термальных и шахтных вод, а также морской воды. При ионной флотации отдельные ионы, молекулы, тонкодисперсные осадки и коллоидные частицы взаимодействуют с флотационными реагентами-собирателями, чаще всего катионного типа, и извлекаются пузырьками в пену или плёнку на поверхности раствора. Тонкодисперсные пузырьки для флотации из растворов получают также при электролитическом разложении воды с образованием газообразных кислорода и водорода (электрофлотация). При электрофлотации расход реагентов существенно меньше, а в некоторых случаях они не требуются.

Широкое использование флотации для обогащения полезных ископаемых привело к созданию различных конструкций флотационных машин с камерами большого размера (до 10-30 м³), обладающих высокой производительностью. Флотационная машина состоит из ряда последовательно расположенных камер с приёмными и разгрузочными устройствами для пульпы. Каждая камера снабжена аэрирующим устройством и пеносъёмником.

Области применения

В мире благодаря флотации вовлекаются в промышленное производство месторождения тонковкрапленных руд и обеспечивается комплексное использование полезных ископаемых. Фабрики выпускают до пяти видов концентратов. В ряде случаев хвосты флотации не являются отходами, а используются в качестве стройматериалов, удобрений для сельского хозяйства и в др. целях. Флотация является ведущим процессом при обогащении руд цветных металлов. Внедряется использование оборотной воды, что снижает загрязнение водоёмов .

Флотореагенты

Существует несколько типов флотореагентов, отличающихся принципом действия:

  • Собиратели  — реагенты, избирательно сорбирующиеся на поверхности минерала, который необходимо перевести в пену, и придающие частицам гидрофобные свойства. В качестве собирателей используют вещества, молекулы которых имеют дифильное строение: гидрофильная полярная группа, которая закрепляется на поверхности частиц, и гидрофобный углеводородный радикал. Чаще всего собиратели являются ионными соединениями; в зависимости от того, какой ион является активным различают собиратели анионного и катионного типов. Реже применяются собиратели, являющиеся неполярными соединениями, не способными к диссоциации. Типичными собирателями являются: ксантогенаты и дитиофосфаты — для сульфидных минералов, натриевые мыла́ и амины  — для несульфидных минералов, керосин — для обогащения угля.
    Расход собирателей составляет сотни граммов на тонну руды;
  • Регуляторы  — реагенты, в результате избирательной сорбции которых на поверхности минерала, последний становится гидрофильным и не способным к флотации. В качестве регуляторов применяют соли неорганических кислот и некоторые полимеры ;
  • Пенообразователи  — предназначены для улучшения диспергирования воздуха и придания устойчивости минерализованным пенам. Пенообразователями служат слабые поверхностно-активные вещества .
    Расход пенообразователей составляет десятки граммов на тонну руды.

Литература

  • Мещеряков Н. Ф. Флотационные машины, М. 1972
  • Глембоцкий В. А. Классен В. И. Флотация, М. 1973
  • Справочник по обогащению руд, М. 1974.
  • Классен В. И. Барский В. И. Лекции проф. Кривошеина В. Р.

Категории:

  • Металлургия
  • Методы разделения
  • Химическая промышленность
  • Горное дело
  • Обогащение руд

Wikimedia Foundation. 2010 .